Pintos Project 2
User Programs

COS 450 - Fall 2018

Project 1 Submissions
Easy Things to Fix

Project submission

Code style

ASSERT and malloc()

Design document questions

Code Style
1.2.2.2

Match the Pintos code style

Indent 2 spaces -- braces by themselves
“/* */"not“//”

Remove don’t comment out unused code

function (argl, arg2)
not function (argl, arg2)

Note the
Space

COS450-F18-07-Pintos Project 2 - October 8, 2018

ASSERT and malloc

Don’t ASSERT () on things that fail

Check the return from malloc ()

DESIGNDOC

It’s an ASCII text file

Hard wrapped at 79 characters
Use proper spelling and grammar
Answer the questions

Consider alternative designs

pintos/src/ /DESIGNDOC

Project 1 Review

All code was kernel code...
Alarm Clock
Priority Scheduling

Advanced Scheduler

COS450-F18-07-Pintos Project 2 - October 8, 2018

Prioritv Schedulina_|{ Ajarm
ik Komel-medaitiest

Pintos Kernel

Threading

Simple Scheduler | Device Support

Boot Support

Support Code Public Tests

Before Project 1

Prioritv Schadulina_|[Alarm
LK@t Seanedeiifiest

P1: Alarm
P1: Priority
Inheritance
P1:MLFQS Pintos Kernel

reading

Simple Scheduler

Device Support

Boot Support

Support Code | [Students Create] [Public Tests |

After Project 1

Project 2

Enable user processes in Pintos...
Set up stack and pass arguments
Implement process waiting

Implement system calls

COS450-F18-07-Pintos Project 2 - October 8, 2018

Stress Tests|

P2-4; P2-4:
Robustness ode
P2-4: System Call Functionality

Prioritv Schedulina_|{ Ajarm
ik Komel-medaitiest

P1: Alarm
P1: Priority
Inheritance
P1:MLFQS Pintos Kernel

reading
Simple Scheduler

Device Support

Boot Support]

Support Code | [Students Create] [Public Tests |

Before Project 2

10

P2-4 P2-4:
Stress Tests,
Robustness jode
ses
P2-4: System Call Functionality |

Priority Scheduling_|| Alarm
ML K@ Senedelifest)

P1: Alarm
P1: Priority
Inheritance
P1:MLFQS Pintos Kernel

| P2: System Call Layer: Gopy-infout, FD Management |

P2: Process

reading
Simple Scheduler

Device Support

Boot Support]

Support Code | [Students Create] [Public Tests |

After Project 2

11

Getting Started

No code from Project 1 is needed
You can start from a fresh copy
Knowledge of threads is important

Read “Testing” section again

70+ tests, know how to run them

12

COS450-F18-07-Pintos Project 2 - October 8, 2018

Where You Work

Most Work in “userprog”
make, make check, make grade here
All files already exist.

Some external files are useful

from threads and lib

13

Files to Modify

process.c
Load and execute of processes
Stack setup code
Process waiting code

syscall.c

exception.c

14

Files to Modify

process.c

syscall.c
All system calls go here
Stub code exits immediately

exception.c

15

COS450-F18-07-Pintos Project 2 - October 8, 2018

Files to Modify

process.c
syscall.c
exception.c
Contains exception handling code

May/may not modify, depends on solution

16

Important Files

pagedir.c

pagedir_get_page () - validate refs
threads/vaddr.h

is_user_vaddr() - validate pointers

lib/string.c

strtok_r()

17

Running a Program

The shell parses a command “cp pintos .”
Shell calls fork() and execve(“cp”, argy, env)
cp uses file system API to copy files

cp (might) print to the console

cp exits and returns an exit code to shell

18

COS450-F18-07-Pintos Project 2 - October 8, 2018

19
Pintos Chain of Execution

threads/init.c
main() = run_actions(argv)
run_actions(argv) — run_task(argv)

run_task(argv) =
process_wait(process_execute(task))

20
Pintos Chain of Execution

userprog/process.c

process_execute() creates thread that runs
start_process(filename, ...)

start_process() — load(filename)
load() does all the remaining work

set up stack, data, code, etc.

21
Project Requirements

Passing arguments to process

Safe memory access
" This is just
Process waiting a list of tasks

not the order of

System calls (implement them) . .
implementation

Process termination messages

Deny write to open executable files

COS450-F18-07-Pintos Project 2 - October 8, 2018

Passing Arguments

Parse command line string:

cp -r pintos

into individual tokens onto user stack.

Spec says in
process_execute()

You can do this in many ways...

strtok_r() a really good choice

22

Setting up the Stack

Push the arguments, word align

Push a NULL sentinel (0)

Push pointers to arguments (in reverse)

Push a pointer to the first pointer

Pu

Pu

sh the argument count

sh a fake return address (0)

23

|Address |Name [Data Type
oxbEff£Efe largv(3][...] "bar\0" char[4]
Oxbf£EE£E8 largv(2](...] "foo\0" lchar[4]
OxbEfEEEES largv[1][...] "_1\0" lchar[3]
Oxbiffffed largv(0][...] "/bin/1s\0" char[8]
0xbfffffec word-align 0 uint8_t
oxbEffEfes largvi4] o lchar *
oxbEfEEfed largv(3] OxbEfffffc lchar *
oxbEEEEfe0 largvi2] OxbEEEEEER lchar *
oxbEE£EEde largv1] OxbEEfeees lchar *
oxbEE£££dE lazgv0] oxbfffffed lchar +
oxbEE££Eda largv OxbfEE£Ede lchar *~
oxbE££££dO largc 4 int
oxbEffEfce return address 0 void (*) O
hex_dump()
bf££££C0 00 00 00 00
bEEEEEAO 04 00 00 00 d8 £f £f bf-ed £f £f bf £5 £f £f bf
bfffffe0 £8 £f £f bf fc £f £f bE-00 00 00 00 00 2f 62 69
bffff££0 6e 2f 6c 73 00 2d 6c 00-66 6f 6£ 00 62 61 72 00

this all should happen in start_process|() after the
interrupt frame (and the stack pointer) is initialized

24

COS450-F18-07-Pintos Project 2 - October 8, 2018

Accessing User Memory

When user processes make system calls the kernel needs
to deal with the pointers...

NULL pointers
Pointers to unmapped memory
Pointers to kernel memory (invalid)

Once identified, just kill the process...

25

Accessing User Memory

Verify before dereference

is in user space -- is_user_vaddr()
is mapped -- pagedir_get_page()
at start and end of buffers and strings

Modify fault handler

26

Accessing User Memory

Verify before dereference

Modify fault handler

only check if in user space
invalid access triggers page fault
modify page fault handler

much better performance (§ 3.1.5)

27

COS450-F18-07-Pintos Project 2 - October 8, 2018

Typical Implementation

Check address and use page fault handler
Don’t pass user addresses into kernel
copy_from_user(void *dst, void *src)

copy_to_user(void *dst, void *src)

28

Copy to/from User

/* Reads a byte at user virtual address UADDR.
UADDR must be below PHYS_BASE.
Returns the byte value if successful,
occurred. */

static int

get_user (const wint8_t *uaddr)

-1 if a segfault

int ;
asm ("movl $1£, %0; movzbl %1, %0; 1:"
=sa" (result) : "m" (+uaddr));

return result;

/* Writes BYTE to user address UDST.
T must be below PHYS_BASE.
Returns true if successful, false if a segfault occurred.
static bool
put_user (uint8 t *udst, uint8 t byte)
{
int error_code;
asm ("movl $1£, %0; movb b2, %1; 1:"
i "=ea’ (error_code), "sm' (*udst) : "q" (byte));
return error_code

*/

29

This is a skeleton that must be filled in

/* Page fault handler
solutions to project 2 may

to implement virtual memory. Some
also require modifying this code.
ry, the address that faulted is in CR2 (Control Register

At ent:

2) and information about the fault, formatted as described in

the PE_¥ macros in exception.h, is in F's error_code The

exanple code here shows how to parse that information. You

can find more information about both of these in

description of "Interrupt 14--Page Fault Exception (#PF)" in
nce'. */

[1A32-v3a] section 5.15 "Exception and Interrupt Refere

static void
page_fault (struct intr_frame *f)

ST e, PAQE
Fault
Handler

access was write, falss
; ™
void *fault addr; /* Fault address. *.
/* Obtain faulting address, the virtual address that w
he fault. ‘Tt may point to code or

Gata: Tt Ts ot mecessarily the adiress of the instruction
that caused the fault (p)
See [1A32-vZa] "MOV--Mo
[1832-v3a) '5.15 "Interrupt 14--Page

(o)
asm (oo Yece2, 50" " (fault_addr));

/o to/from Control Registers' and
Fault Exception

/% Turn intercupts back on (they wers only off 8o that we could
be assured of reading CR2 before it changed). */

inte enable

/2 Count page fauits. */

Page_fault_ cnt+

/% Determine cause. *+/

not prasent

write
b sttt

/% To implement virtual memory, delete the rest of the function
body, “and replac

ki1l (5);

30

COS450-F18-07-Pintos Project 2 - October 8, 2018

System Calls

System Calls allow user processes to ask the kernel to
perform operations they don’t have permission to do

themselves.

...this is done through syscall_handler()

31

32
Read the system call number (f->esp)
Read the arguments above the stack pointer
Pass to the appropriate function (that you write)
Return any results in f->eax Avoid duplicate code, keep it
clean
33

Array of Function Pointers

int sum(int a, int b);

int subtract(int a, int b);
int mul (int a, int

int div(int a, int b);

int (*p[4]) (int x, int y);

int main(void)
{
int result;
int i, j, op;

pl[0] = sum; /* address of sum() */
pl[1l] = subtract; /* address of subtract() */
pl2] = mul; /* address of mul() */
pI[3] = div; /* address of div() */
[...1

// op being the index of one of the four functions
result = (*plopl) (i, j);

the functions

the array

setup

COS450-F18-07-Pintos Project 2 - October 8, 2018

Filesystem Calls

file.h and filesys.h
Don’t need to modify these.

Syscalls use file descriptors and the file system uses
struct file.

Make sure to synchronize access to the file system --
only one change at a time.

STDOUT_FILENO and STDIN_FILENO

34

process_wait()

Calling function blocks (using synchronization) waiting for
the child process to exit.

Syscall wait() is trivial after this is complete.
Returns exit status of child, or -1
Most work of all system calls.

READ SPECIFICATION CAREFULLY

35

process_wait()

Child may exit before parent calls process_wait()
Parent may never call process_wait()

Child may exit after parent is gone

36

COS450-F18-07-Pintos Project 2 - October 8, 2018

Deny Write to Executables

Don’t allow changes to files that are currently loaded as
executables.

Use “file_deny_write()” to prevent writes to an open file.
Use “file_allow_write()” to allow.

Executables should be kept open and unwritable as long
as the process is running

37

Order of Implementation

Temporarily set up the stack

Implement safe memory access

Basic system call handler

Implement exit system call

Implement write system call (to console)
Make process_wait() an infinite loop

Everything else...

38

39

COS450-F18-07-Pintos Project 2 - October 8, 2018

Do This!

Match coding style
Package for grading correctly
Answer questions in DESIGNDOC

Think about alternate designs

40

41
Argument Passing
String parsing
No limit to “command” size
Avoid stack overflow, abort if needed
Synchronize parent’s startup of child
42

System Calls

Keep it clean, abstract, easily extensible

Synchronize access to filesystem
(don’t disable interrupts!)

Map fd to struct file * in your code
Synchronize process_wait() properly

Cover all cases of process_wait()

COS450-F18-07-Pintos Project 2 - October 8, 2018

User Memory Access

Choose an implementation (there are two)
Don’t pass bad data further into kernel
Don’t get too creative or complex

Look ahead, what will work in Project 3?

43

End

Pintos Project 2 - User Programs

44

COS450-F18-07-Pintos Project 2 - October 8, 2018

