
Pintos Project 2
User Programs

COS 450 - Fall 2018

1

Project 1 Submissions
Easy Things to Fix

• Project submission

• Code style

• ASSERT and malloc()

• Design document questions

2

Code Style
1.2.2.2

• Match the Pintos code style

• Indent 2 spaces -- braces by themselves

• “/* */” not “//”

• Remove don’t comment out unused code

• function (arg1, arg2)  
not function(arg1,arg2)

Note the
Space

3

COS450-F18-07-Pintos Project 2 - October 8, 2018

ASSERT and malloc

• Don’t ASSERT() on things that fail

• Check the return from malloc()

4

DESIGNDOC
• It’s an ASCII text file

• Hard wrapped at 79 characters

• Use proper spelling and grammar

• Answer the questions

• Consider alternative designs

• pintos/src/____/DESIGNDOC

5

Project 1 Review

All code was kernel code...

• Alarm Clock

• Priority Scheduling

• Advanced Scheduler

6

COS450-F18-07-Pintos Project 2 - October 8, 2018

Pintos Kernel

Device Support

Boot Support

Threading
Simple Scheduler

P1: Kernel-mode Test CasesMLFQS Scheduling

Priority Scheduling Alarm
Clock

Public TestsSupport Code

Before Project 1

7

Pintos Kernel

Device Support

Boot Support

Threading
Simple Scheduler

P1: Priority Scheduler

P1: MLFQS

P1: Alarm
P1: Priority
Inheritance

P1: Kernel-mode Test CasesMLFQS Scheduling
Priority Scheduling Alarm

Clock

Students Create Public TestsSupport Code

After Project 1

8

Project 2

Enable user processes in Pintos...

• Set up stack and pass arguments

• Implement process waiting

• Implement system calls

9

COS450-F18-07-Pintos Project 2 - October 8, 2018

Students Create Public TestsSupport Code

Pintos Kernel

Usermode  
Test Cases

Device Support

Stress Tests

Boot Support

Threading
Simple Scheduler

P1: Priority Scheduler

P1: MLFQS

P1: Alarm
P1: Priority
Inheritance

Basic Filesystem

P1: Kernel-mode Test CasesMLFQS Scheduling

Priority Scheduling Alarm
Clock

P2-4: System Call Functionality

P2-4:
Robustness

P2-4: 
Basic

Before Project 2

10

Students Create Public TestsSupport Code

Pintos Kernel

Usermode  
Test Cases

Device Support

P2: System Call Layer: Copy-in/out, FD Management

Stress Tests

Boot Support

Threading
Simple Scheduler

P1: Priority Scheduler

P1: MLFQS

P1: Alarm

P2: Process

P1: Priority
Inheritance

Basic Filesystem

P1: Kernel-mode Test CasesMLFQS Scheduling
Priority Scheduling Alarm

Clock

P2-4: System Call Functionality

P2-4:
Robustness

P2-4: 
Basic

After Project 2

11

Getting Started

• No code from Project 1 is needed

• You can start from a fresh copy

• Knowledge of threads is important

• Read “Testing” section again

• 70+ tests, know how to run them

12

COS450-F18-07-Pintos Project 2 - October 8, 2018

Where You Work

• Most Work in “userprog”

• make, make check, make grade here

• All files already exist.

• Some external files are useful

• from threads and lib 

13

Files to Modify
• process.c

• Load and execute of processes

• Stack setup code

• Process waiting code

• syscall.c

• exception.c

14

Files to Modify

• process.c

• syscall.c

• All system calls go here

• Stub code exits immediately

• exception.c

15

COS450-F18-07-Pintos Project 2 - October 8, 2018

Files to Modify

• process.c

• syscall.c

• exception.c

• Contains exception handling code

• May/may not modify, depends on solution

16

Important Files
• pagedir.c

• pagedir_get_page () - validate refs

• threads/vaddr.h

• is_user_vaddr() - validate pointers

• lib/string.c

• strtok_r()

17

Running a Program

• The shell parses a command “cp pintos .”

• Shell calls fork() and execve(“cp”, argv, env)

• cp uses file system API to copy files

• cp (might) print to the console

• cp exits and returns an exit code to shell

18

COS450-F18-07-Pintos Project 2 - October 8, 2018

Pintos Chain of Execution

threads/init.c

main() → run_actions(argv)

run_actions(argv) → run_task(argv)

run_task(argv) →
process_wait(process_execute(task))

19

Pintos Chain of Execution

userprog/process.c

process_execute() creates thread that runs
start_process(filename, ...)

start_process() → load(filename)

load() does all the remaining work

set up stack, data, code, etc.

20

Project Requirements
• Passing arguments to process

• Safe memory access

• Process waiting

• System calls (implement them)

• Process termination messages

• Deny write to open executable files

This is just
a list of tasks

not the order of
implementation

21

COS450-F18-07-Pintos Project 2 - October 8, 2018

Passing Arguments
Parse command line string:

cp -r pintos .

into individual tokens onto user stack.

You can do this in many ways...

strtok_r() a really good choice

 Spec says in
process_execute()

22

Setting up the Stack
1.Push the arguments, word align

2.Push a NULL sentinel (0)

3.Push pointers to arguments (in reverse)

4.Push a pointer to the first pointer

5.Push the argument count

6.Push a fake return address (0)

23

hex_dump()

this all should happen in start_process() after the
interrupt frame (and the stack pointer) is initialized

24

COS450-F18-07-Pintos Project 2 - October 8, 2018

Accessing User Memory

When user processes make system calls the kernel needs
to deal with the pointers...

• NULL pointers

• Pointers to unmapped memory

• Pointers to kernel memory (invalid)

Once identified, just kill the process...

25

Accessing User Memory

• Verify before dereference

• is in user space -- is_user_vaddr()

• is mapped -- pagedir_get_page()

• at start and end of buffers and strings

• Modify fault handler

26

Accessing User Memory
• Verify before dereference

• Modify fault handler

• only check if in user space

• invalid access triggers page fault

• modify page fault handler

• much better performance (§ 3.1.5)

27

COS450-F18-07-Pintos Project 2 - October 8, 2018

Typical Implementation

• Check address and use page fault handler

• Don’t pass user addresses into kernel

• copy_from_user(void *dst, void *src)

• copy_to_user(void *dst, void *src)

28

Copy to/from User
/* Reads a byte at user virtual address UADDR.
 UADDR must be below PHYS_BASE.
 Returns the byte value if successful, -1 if a segfault
 occurred. */
static int
get_user (const uint8_t *uaddr)
{
 int result;
 asm ("movl $1f, %0; movzbl %1, %0; 1:"
 : "=&a" (result) : "m" (*uaddr));
 return result;
}

/* Writes BYTE to user address UDST.
 UDST must be below PHYS_BASE.
 Returns true if successful, false if a segfault occurred. */
static bool
put_user (uint8_t *udst, uint8_t byte)
{
 int error_code;
 asm ("movl $1f, %0; movb %b2, %1; 1:"
 : "=&a" (error_code), "=m" (*udst) : "q" (byte));
 return error_code != -1;
}

29

Page
Fault

Handler

/* Page fault handler. This is a skeleton that must be filled in
 to implement virtual memory. Some solutions to project 2 may
 also require modifying this code.

 At entry, the address that faulted is in CR2 (Control Register
 2) and information about the fault, formatted as described in
 the PF_* macros in exception.h, is in F's error_code member. The
 example code here shows how to parse that information. You
 can find more information about both of these in the
 description of "Interrupt 14--Page Fault Exception (#PF)" in
 [IA32-v3a] section 5.15 "Exception and Interrupt Reference". */
static void
page_fault (struct intr_frame *f)
{
 bool not_present; /* True: not-present page, false: writing r/o page. */
 bool write; /* True: access was write, false: access was read. */
 bool user; /* True: access by user, false: access by kernel. */
 void *fault_addr; /* Fault address. */

 /* Obtain faulting address, the virtual address that was
 accessed to cause the fault. It may point to code or to
 data. It is not necessarily the address of the instruction
 that caused the fault (that's f->eip).
 See [IA32-v2a] "MOV--Move to/from Control Registers" and
 [IA32-v3a] 5.15 "Interrupt 14--Page Fault Exception
 (#PF)". */
 asm ("movl %%cr2, %0" : "=r" (fault_addr));

 /* Turn interrupts back on (they were only off so that we could
 be assured of reading CR2 before it changed). */
 intr_enable ();

 /* Count page faults. */
 page_fault_cnt++;

 /* Determine cause. */
 not_present = (f->error_code & PF_P) == 0;
 write = (f->error_code & PF_W) != 0;
 user = (f->error_code & PF_U) != 0;

 /* To implement virtual memory, delete the rest of the function
 body, and replace it with code that brings in the page to
 which fault_addr refers. */
 printf ("Page fault at %p: %s error %s page in %s context.\n",
 fault_addr,
 not_present ? "not present" : "rights violation",
 write ? "writing" : "reading",
 user ? "user" : "kernel");
 kill (f);
}

30

COS450-F18-07-Pintos Project 2 - October 8, 2018

System Calls

System Calls allow user processes to ask the kernel to
perform operations they don’t have permission to do
themselves.

...this is done through syscall_handler()

31

System Calls

• Read the system call number (f->esp)

• Read the arguments above the stack pointer

• Pass to the appropriate function (that you write)

• Return any results in f->eax Avoid duplicate code, keep it
clean

32

Array of Function Pointers
int sum(int a, int b);
int subtract(int a, int b);
int mul(int a, int b);
int div(int a, int b);

int (*p[4]) (int x, int y);

int main(void)
{
 int result;
 int i, j, op;

 p[0] = sum; /* address of sum() */
 p[1] = subtract; /* address of subtract() */
 p[2] = mul; /* address of mul() */
 p[3] = div; /* address of div() */
[...]

// op being the index of one of the four functions
result = (*p[op]) (i, j);

the functions

the array

use

setup

33

COS450-F18-07-Pintos Project 2 - October 8, 2018

Filesystem Calls
• file.h and filesys.h

• Don’t need to modify these.

• Syscalls use file descriptors and the file system uses
struct file.

• Make sure to synchronize access to the file system --
only one change at a time.

• STDOUT_FILENO and STDIN_FILENO

34

process_wait()

• Calling function blocks (using synchronization) waiting for
the child process to exit.

• Syscall wait() is trivial after this is complete.

• Returns exit status of child, or -1

• Most work of all system calls.

• READ SPECIFICATION CAREFULLY

35

process_wait()

• Child may exit before parent calls process_wait()

• Parent may never call process_wait()

• Child may exit after parent is gone

36

COS450-F18-07-Pintos Project 2 - October 8, 2018

Deny Write to Executables

• Don’t allow changes to files that are currently loaded as
executables.

• Use “file_deny_write()” to prevent writes to an open file.

• Use “file_allow_write()” to allow.

• Executables should be kept open and unwritable as long
as the process is running

37

Order of Implementation
• Temporarily set up the stack

• Implement safe memory access

• Basic system call handler

• Implement exit system call

• Implement write system call (to console)

• Make process_wait() an infinite loop

• Everything else...

38

Walkthrough
code not walls :-(

39

COS450-F18-07-Pintos Project 2 - October 8, 2018

Do This!

• Match coding style

• Package for grading correctly

• Answer questions in DESIGNDOC

• Think about alternate designs

40

Argument Passing

• String parsing

• No limit to “command” size

• Avoid stack overflow, abort if needed

• Synchronize parent’s startup of child

41

System Calls

• Keep it clean, abstract, easily extensible

• Synchronize access to filesystem 
(don’t disable interrupts!)

• Map fd to struct file * in your code

• Synchronize process_wait() properly

• Cover all cases of process_wait()

42

COS450-F18-07-Pintos Project 2 - October 8, 2018

User Memory Access

• Choose an implementation (there are two)

• Don’t pass bad data further into kernel

• Don’t get too creative or complex

• Look ahead, what will work in Project 3?

43

End
Pintos Project 2 - User Programs

44

COS450-F18-07-Pintos Project 2 - October 8, 2018

